Ciência da Computação
URI Permanente desta comunidade
Navegar
Navegando Ciência da Computação por Assunto "Aprendizado de máquina"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemPredição de resultados de partidas de futebol(2024) Gabriel Frontório; Fábio Alexandrini, Dr; Juliano Tonizetti Brignoli, Dr; Daniel Gomes Soares, MscO futebol é um dos esportes mais populares do mundo e existem inúmeras pessoas aficcionadas por esse esporte ao redor do globo. Junto com a paixão pelo futebol surgiu a gana de adivinhar, ou prever, o resultado das partidas de futebol. Com isso surgiram diversas formas de aposta envolvendo os resultados das partidas, sendo um mercado que movimenta bilhões por ano e cresce cada vez mais. O presente trabalho apresenta uma aplicação que faz a predição do resultado de uma partida de futebol com base nas estatísticas dos times que irão se enfrentar. Seu principal objetivo é buscar a maior taxa de acerto possível, buscando reduzir possíveis perdas em apostas esportivas. Com o uso da inteligência artificial e machine learning é possível analisar dados e, com base nas estatísticas das equipes, definir qual será o resultado final da partida. Para o desenvolvimento dessa aplicação foi utilizado um conjunto de dados que contém 8870 partidas da Premier League disputadas entre 2000 e 2023. Os dados desse conjunto foram processados e resultaram em 68 estatísticas diferentes que foram utilizadas pelos modelos preditivos para prever o resultado da partida. Após o processamento dos dados, foram utilizados dez modelos preditivos diferentes, que foram treinados e testados com o mesmo conjunto de dados, com o melhor modelo sendo o modelo de Naive Bayes, que atingiu uma acurácia de 57,48% e uma média de 0,73 na métrica ROC. Os modelos preditivos foram treinados e testados para terem três possíveis resultados, sendo possível que a partida termine em vitória, empate ou derrota. O número de possíveis saídas diminui a acurácia dos modelos preditivos, se utilizarmos o mesmo conjunto de dados com os mesmos modelos preditivos, iremos obter 77,95% de acurácia, o que nos mostra a variação da acurácia de acordo com o número de saídas. O futebol é impactado totalmente por ações humanas, dos jogadores em campo e dos fatores extra campo, e essas ações são imprevisíveis e interferem diretamente no resultado final da partida e no acerto ou não da predição.